SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A34, 143157.

Acta Cryst. (1981). B37, 106-1 107

The Structure of Antimony(III) Phosphite

By J. Loub
Department of Inorganic Chemistry, Charles University, Albertov 2030, 12840 Praha 2, Czechoslovakia
and H. Paulus
Institut für Physikalische Chemie, Technische Hochschule, Petersenstrasse 20, 61 Darmstadt, Federal Republic of Germany

(Received 15 November 1980; accepted 8 December 1980)

Abstract

Sb}_{2}\left(\mathrm{HPO}_{3}\right)_{3}, \quad P \overline{1}, \quad a=9.182(1), \quad b=\) 8.353 (1), $\quad c=7.220$ (1) $\AA, \quad a=68.21$ (1), $\quad \beta=$ $79.52(1), \gamma=66.47(1)^{\circ}$ at $297 \mathrm{~K}, Z=2, D_{o}=$ 3.33 (4) at $296 \mathrm{~K}, D_{c}=3.41 \mathrm{Mg} \mathrm{m}^{-3} . R=0.020$ for 2150 reflexions. The structure consists of isolated HPO_{3} tetrahedra and Sb atoms coordinated to four O atoms.

Introduction. The title compound was studied as part of an investigation of phosphites. Reaction of antimony trioxide with a concentrated aqueous solution of phosphorous acid ($3.5 \mathrm{mmol} \mathrm{Sb} \mathrm{O}_{3}, 30-150 \mathrm{mmol}$ $\mathrm{H}_{3} \mathrm{PO}_{3}$, and water to 15 ml) gave a voluminous precipitate from which, after standing for more than one year at 298 K , brownish crystals of the title compound were obtained (Vojtišek, 1979), with well developed faces $\{100\}$ and $\{011\}$ of maximum prism dimensions $0.3 \times 0.3 \times 0.5 \mathrm{~mm} .4428$ intensities were collected ($\omega / 2 \theta$ scan) in the range $3 \leq 2 \theta \leq 55^{\circ}$ from a crystal of volume $0.0157 \mathrm{~mm}^{3}$ on a Stoe four-circle diffractometer with graphite-monochromated Mo Ka radiation ($\lambda=0.71069 \AA$). 2163 reflexions were unique; those with $F<2 \sigma(F)$ were treated as unobserved. The remaining 2150 reflexions were corrected for Lp and absorption effects ($\mu=6.24 \mathrm{~mm}^{-1}$).

The cell dimensions were determined by least squares from the 2θ angles of 40 reflexions measured on the same instrument. The positions of the non-H atoms were obtained by direct methods and refined by least squares to $R=\sum| | F_{n}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|=0.056$ with isotropic temperature factors. Further cycles with anisotropic temperature factors gave $R=0.020$ and $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}=0.019$ with
weights based on counting statistics. A difference map showed no electron density maximum $>1 \cdot 1 \mathrm{e} \AA^{-3}$. The H atoms were placed in optimum tetrahedral positions with $\mathrm{P}-\mathrm{H}=1.38 \AA$ and $U=0.02 \AA^{2}$. The final R and R_{w} values were 0.020 and 0.019 . A final difference map showed no residual electron density $>0.7 \mathrm{e}^{-3}$. Scattering factors for neutral atoms were taken from International Tables for X-ray Crystallography (1974). All calculations were performed with SHELX 76 (Sheldrick, 1976), modified for use on a small computer (Data General Nova 3).

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ with e.s.d.'s in parentheses, and equivalent temperature factors

$$
B_{\mathrm{eq}}=4\left|V^{2} \operatorname{det}\left(\beta_{i j}\right)\right|^{1 / 3}
$$

	x		y	z
	x	$B\left(\AA^{2}\right)$		
$\mathrm{Sb}(1)$	$7329(1)$	$4922(1)$	$11(1)$	0.97
$\mathrm{Sb}(2)$	$4188(1)$	$8438(1)$	$3172(1)$	0.91
$\mathrm{P}(1)$	$6402(1)$	$1092(1)$	$2373(1)$	0.91
$\mathrm{H}(1)$	7820	62	1645	1.58
$\mathrm{O}(11)$	$5071(3)$	$584(3)$	$2050(4)$	1.40
$\mathrm{O}(12)$	$6728(3)$	$566(3)$	$4572(3)$	1.12
$\mathrm{O}(13)$	$5985(3)$	$3148(3)$	$1248(4)$	1.26
$\mathrm{P}(2)$	$616(1)$	$2166(1)$	$2276(1)$	1.00
$\mathrm{H}(2)$	299	1534	4305	1.58
$\mathrm{O}(21)$	$2003(3)$	$625(3)$	$1788(4)$	1.71
$\mathrm{O}(22)$	$915(3)$	$3906(3)$	$1968(4)$	1.48
$\mathrm{O}(23)$	$-798(3)$	$2612(3)$	$1044(4)$	1.37
$\mathrm{P}(3)$	$2609(1)$	$5004(1)$	$4558(1)$	0.98
$\mathrm{H}(3)$	1127	$5003(3)$	5363	1.58
$\mathrm{O}(31)$	$2574(3)$	$5908(3)$	$2261(4)$	1.34
$\mathrm{O}(32)$	$3679(3)$	$2979(3)$	$5140(4)$	1.55
$\mathrm{O}(33)$	$3036(3)$	$6139(4)$	$5424(4)$	1.72

(C) 1981 International Union of Crystallography

Discussion. Final atomic parameters are given in Table 1.* The more important interatomic distances, bond angles and the symmetry code are given in Table 2. A projection of the structure in the $X Y$ plane is depicted in Fig. 1. $\mathrm{Sb}(1), \mathrm{Sb}(2), \mathrm{Sb}\left(1^{1}\right)$ and $\mathrm{Sb}\left(2^{1}\right)$ form a slightly distorted parallelogram. $\mathrm{The} \mathrm{Sb}-\mathrm{O}$ distances show that eight out of nine phosphite O atoms are relatively strongly coordinated to two Sb atoms. O (33), with the shortest $\mathrm{P}-\mathrm{O}$ distance, is uncoordinated. The coordination polyhedron of Sb is trigonal bipyramidal with one of the equatorial corners occupied by the lone pair of electrons. The means of the shorter equatorial

[^0]Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\begin{array}{r} \mathrm{Sb}(1)-\mathrm{Sb}\left(1^{1}\right) \\ -\mathrm{Sb}(2) \end{array}$	$\begin{aligned} & 4 \cdot 230(1) \\ & 4 \cdot 240(1) \end{aligned}$	$\begin{aligned} & 4.916(1) \\ & 5 \cdot 065(1) \end{aligned}$	
$\begin{array}{r} \mathrm{Sb}(1)-\mathrm{O}\left(31^{\mathrm{I}}\right) \\ -\mathrm{O}\left(23^{\prime \prime}\right) \\ -\mathrm{O}(13) \\ -\mathrm{O}\left(22^{\prime}\right) \end{array}$	$\begin{aligned} & 1.980(2) \\ & 1.996(2) \\ & 2.143(3) \\ & 2.233(3) \end{aligned}$	$\begin{array}{r} \mathrm{O}\left(31^{\prime}\right)-\mathrm{Sb}(1)-\mathrm{O}\left(23^{\prime \prime}\right) \\ \mathrm{O}(13)-\mathrm{Sb}(1)-\mathrm{O}\left(31^{1^{\prime}}\right) \\ -\mathrm{O}\left(23^{\prime \prime}\right) \\ -\mathrm{O}\left(22^{\prime}\right) \end{array}$	$\begin{array}{r} 87.0(1) \\ 79.2(1) \\ 84.7(1) \\ 158.8(1) \end{array}$
$\begin{array}{r} \mathrm{Sb}(2)-\mathrm{O}\left(12^{\mathrm{IV})}\right. \\ -\mathrm{O}\left(1^{\text {IIII }}\right) \\ -\mathrm{O}\left(32^{2 \mathrm{~V}}\right) \\ -\mathrm{O}\left(21^{\mathrm{III}}\right) \end{array}$	$\begin{aligned} & 2 \cdot 000(2) \\ & 2 \cdot 091(3) \\ & 2 \cdot 161(2) \\ & 2 \cdot 192(2) \end{aligned}$	$\begin{array}{r} \mathrm{O}\left(12^{\text {iv }}\right)-\mathrm{Sb}(2)-\mathrm{O}\left(11^{\text {III }}\right) \\ \mathrm{O}\left(32^{\text {iv }}\right)-\mathrm{Sb}(2)-\mathrm{O}\left(12^{\text {lv }}\right) \\ -\mathrm{O}\left(11^{\mathrm{II}}\right) \\ -\mathrm{O}\left(21^{\mathrm{II}}\right) \end{array}$	$\begin{array}{r} 85 \cdot 1(1) \\ 83.9(1) \\ 82.9(1) \\ 160 \cdot 6(1) \end{array}$
$\begin{array}{r} \mathrm{P}(1)-\mathrm{O}(11) \\ -\mathrm{O}(12) \\ -\mathrm{O}(13) \end{array}$	$\begin{aligned} & 1.522(3) \\ & 1.534(3) \\ & 1.520(2) \end{aligned}$	$\begin{array}{r} \mathrm{O}(11)-\mathrm{P}(1)-\mathrm{O}(12) \\ -\mathrm{O}(13) \\ \mathrm{O}(12)-\mathrm{P}(1)-\mathrm{O}(13) \end{array}$	114.4 (1) 106.8 (1) 112.6 (2)
$\begin{array}{r} \mathrm{P}(2)-\mathrm{O}(21) \\ -\mathrm{O}(22) \\ -\mathrm{O}(23) \end{array}$	$\begin{aligned} & 1.506(3) \\ & 1.514(3) \\ & 1.550(3) \end{aligned}$	$\begin{array}{r} \mathrm{O}(21)-\mathrm{P}(2)-\mathrm{O}(22) \\ \mathrm{O}(22)-\mathrm{O}(23) \\ \mathrm{P}(2)-\mathrm{O}(23) \end{array}$	$\begin{aligned} & 116 \cdot 0(2) \\ & 107.7(2) \\ & 110.8(1) \end{aligned}$
$\begin{array}{r} \mathrm{P}(3)-\mathrm{O}(31) \\ -\mathrm{O}(32) \\ -\mathrm{O}(33) \end{array}$	$\begin{aligned} & 1.546(2) \\ & 1.516(4) \\ & 1.506(4) \end{aligned}$	$\begin{array}{r} \mathrm{O}(31)-\mathrm{P}(3)-\mathrm{O}(32) \\ -\mathrm{O}(33) \\ \mathrm{O}(32)-\mathrm{P}(3)-\mathrm{O}(33) \end{array}$	$\begin{aligned} & 110.7(2) \\ & 109.0(2) \\ & 114.7(2) \end{aligned}$

Symmetry code
(i) $1-x, 1-y, \bar{z}$
(ii) $1+x, y, z$
(iii) $x, 1+y, 1-z$
(iv) $1-x, 1-y, 1-z$

Fig. 1. Projection of the structure in the $X Y$ plane.
distances and the angles are $2.02 \AA$ and 86.0°; the means of the longer axial distances and the angles are $2.18 \AA$ and 159.4°. The other O atoms are at distances $>2.47 \AA$. The distances and angles in the bipyramids agree with literature data (Bovin, 1976).

The average $\mathrm{P}-\mathrm{O}$ distance, 1.52 (2) \AA, and the average $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angle, $111(3)^{\circ}$, also agree with literature data, e.g. for $\mathrm{Na}_{2} \mathrm{HPO}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ (Brodalla, Goeters, Kniep, Mootz \& Wunderlich, 1978), $\mathrm{CuHPO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Handlovič, 1969) or $\mathrm{MgHPO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (Corbridge, 1956). The longest intramolecular $\mathrm{O}-\mathrm{O}$ distance is $2.569 \AA$ [$\mathrm{O}(11)-\mathrm{O}(12)]$, the shortest intermolecular $\mathrm{O}-\mathrm{O}$ distance is $2.631 \AA\left[\mathrm{O}(13)-\mathrm{O}\left(31^{1}\right)\right]$.

We thank Professors M. Ebert, W. Haase and E. Wölfel for making the work possible.

References

Bovin, J.-O. (1976). Acta Cryst. B32, 1771-1777.
Brodalla, D., Goeters, C., Kniep, R., Mootz, D. \& Wunderlich, H. (1978). Z. Anorg. Allg. Chem. 439, 265-274.
Corbridge, D. E. C. (1956). Acta Cryst. 9, 991-994.
Handlovič, M. (1969). Acta Cryst. B25, 227-231.
International Tables for X-ray Crystallography (1974). Vol IV. Birmingham: Kynoch Press.

Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
VoJTíšEK, P. (1979). Private communication.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35847 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

